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Tensorial structure of a q-deformed sp(4, R) superalgebra 

A Georgieva and Ts Dankova 
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 
Tslsarigradsko Shoussee 72, Sofia 1784. Bulgaria 

Received 17 August 1993 

Abstract A supersymmetric quantum algebra is generated by irreducible tensor operators in 
respect to the algebra suq(2). The even generamn are realized as tensor products of q-boson 
creation and annihilation operators, rransforming as suq(2) spinors and acting as odd generators. 
In t h i s  way me Vansfomtion properties of all the algebra's generators in respect to the q- 
deformed algebra of the angular momenhlm are simultaneously preserved, which is important 
in view of future applications in physics. In the Limit q -, 1 the classical Lie superalgebra 
sg(4. R )  or the osp(ll4) is recovered. 

1. Introduction 

Recently, there has been intense exploration of quantized universal enveloping algebras 
(QUE-algebras) so named by Drinfield [l] and Jimbo [2]. In physical applications 'quantum 
deformations' are very useful as they provide one or more additional parameters [3]. In their 
'classical' limit to special parameters' values, the q-deformed algebras yield a conventional 
Lie algebra in analogy with the h + 0 limit in the transition from the quantum to 
classical mechanics. Hence quantum algebras become relevant in physics where the limits 
of applicability of Lie algebras are stretched. They could be used to describe perturbations 
from some underlying symmetry structure, which appear in many problems in statistical 
mechanics [4], quantum field theory [2], nuclear and molecular spectroscopy [.5,61, quantum 
optics 171 and so on. 

In order to apply a quantum algebra in physics, a well developed theory of its 
representations is needed. One of the most successful steps in developing the quantum group 
representations was the introduction of their q-deformed oscillator realization in [8,9]. The 
oscillator algebra basis in the deformed case satisfies the relations 

aiai - qui t a, . - - q -N, aiai t - q - ' t . - N .  ai a, - q i = l , 2  (..., r (1) 

and 

[Ni, ai] = -a, [ N ~ ,  41 = at (2) 

where the hermitian conjugate creation ai t and annihilation ai ; (at)t  = ai operators are 
the q-analogs of boson operators and Ni are their corresponding number operators. 

In the case of q not being a root of unity the properties of the quantum algebras are 
quite similar to those of classical Lie algebras in connection to their representation theory 
and, as a result, to their possible physical applications. The boson realization method 
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was applied to construct representations of Lie algebras [lo, 111, Lie superalgebras [12,13] 
and loop algebras [14]. The convenience of the q-boson oscillators in the representation 
theory of quantum algebras naturally suggests the definition of tensor operators in terms of 
these oscillators [15-181. In various physical models, especially in nuclear structure theory, 
irreducible tensor operators, in respect to the principal subalgebra of the angular momentum 
[19], are,used as generators of the dynamical symmetry algebra [20-22]. This permits an 
easy calculation of the matrix elements of these operators in an appropriate basis by means 
of the Wigner-Eckart theorem. 

The quantum generalization of the theory of the irreducible tensor operators and their 
products is reasonably well developed for the quanh& algebra U,(su(Z)) [23-251, which 
can be considered as  the q-analog of the quantum theory of angular momentum. In particular 
the Clebsh-Gordon coefficients (CGC) and the symmetry relations between them are derived 
in several papers (see for example [23] and the references therein). In this work the CGCs 
and the definition of irreducible tensor operators from [24] will be used. There the Wigner- 
Racah algebra for su,(Z) is constructed by means of projection operators. The advantages 
of this approach are its independence of the explicit realization from the generators and the 
basis vectors and the analogy with many of the formulae of the quantum theory of angular 
momentum, when an ordinary c-number x is replaced by a q-number 
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In view of future applications, especially in nuclear physics symmetry problems [ZO-221 
we develop a method for constructing a supersymmetric quantum algebra, whose generators 
are suq(2) irreducible tensor operators. In this way the transformation properties of 
the creation and annihilation operators and the algebra generators with respect to the 
su,(2) algebra of the angular momentum are simultaneously preserved. Coming from 
a nuclear physics background we have turned our attention to the qdeformation of boson 
representations of symplectic algebras as they play the role of dynamical symmetry algebras 
in various phenomenological and microscopic models [20-22] developed in this field. As a 
first step we consider a q-deformation of the sp(4, R), which by itself is of physical interest 
[26]. In the classical case 1271 the Sp(4, R) algebra already illustrates the problem of the 
boson realization of an Sp(2d ,  R) Lie algebra for any integer d and for an arbitrary irrep 
of the Sp(2d, R) group. The sp(4 ,  R) has a u(2) subalgebra and thus the whole analysis 
can be made using the well developed Wigner-Racah algebra. 

As ow results are an attempt at the deformation of sp(4, R), a brief review of the 
notations and definitions used is given in section 2. The irreducible tensor operators IT0 of 
rank are expressed by means of two q-boson creation and annihilation operators. Then 
the ITOS of rank 1 are constructed as tensor products of the su,(Z)-spinors. Some properties 
and relations between the obtained ITOS are discussed in section 3. The super algebra’s 
structure, generated by the q-tensor operators introduced, is investigated in section 4. 

2. Initial definitions and notations 

In this paper the Jordan-Schwinger realization [8,9] of the quantum analogue of the su(2) 
algebra constructed by means of two q-deformed boson operators ai and a!. i = 1.2 which 
obey relations (I) and (2) is used 

t 

t t NI - NZ 
J+ = a, a2 .I- = %al .I~ = - , 2 (4) 
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These operators satisfy the commutation relations: 

The normalized states I j m ) q  are subsequently q-analogues of the familiar quantal angular 
momentum states of the basis of the finite-dimensional irreducible representation D j .  The 
allowed values of the ‘angular momentum’ are j = 0, 4, 1, . . . and respectively for its 
‘projection’: m = j ,  j - 1,. . . , - j .  Hence, there is an analogy between the dimensions of 
the irreps Dj  of su,(2) and su(2): dimDj = Zj + 1. 

The action of the suq(2) generators on the basis vectors gives 

J+ljm) = ( [ j r m 1 [ j r t m + 1 1 ) ’ ~ ~ 1 j m ~ t ) .  (6) 

The generalization of the vector addition of angular momenta jl and jz  to the qdeformed 
case, as in the ‘classical’ case, is defined by the expansion of the direct product of the 
representations Djl 8 Dj2 in irreducible components (the Clebsh-Gordon series). The 
structure of the Clebsh-Gordon series for the su,(Z) algebra is the same as for the classical 
s u m  

I j z - j l l  S j S  j l + j z  m = -  j 9 - j + l ,  ..., j .  (7) 

In the theory of quantum algebras the action of its generators on the direct (tensor) product of 
irreducible representations is given by a non-co-commutative co-product. So the components 
of the total angular momentum J of a quantum system consisting of two subsystems 1 and 
2 are modified in the following way: 

By definition, compatible with the formula following.from the Clebsh-Gordon series , the 
CGCs relate vectors belonging to coupled and hcoupled bases: 

I jl j z ;  j m ) ,  = q~fi,hmi I jimi(1))I jzmz(2)) .  (9) 
m i m  

In this paper the explicit expressions for the ,Cj2:, obtained in 1241 are used. 
The CGCS are calculated as matrix elements of projectlon operators between vectors of the 
uncoupled basis (right-hand side of (9)). The projection operators ire expressed in terms of 
powers of the generators J+ (8b), and do not depend on their explicit representations. 

The method of derivation of the CGCS insures their orthogonality and normalization. In 
the limit q + 1 the algebraic expressions for the particular coefficients we use reduce to 
the corresponding standard expressions for the CGCs of su(2). In our work the symheky 
in relation to the sign reversal of all the projections ml, mz and m, 

4 ,-” i m n m z  . = ( -1)h+h- j  9- , c j - m  i ~ - m i j r m z  (10) 

and the permutation symmetry properly 
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are used more often. 
Now the definition of the q-deformed IT0 of rank 1 can be given. As in the ‘classical 

case’ of su(2) the set of 21 + 1 components 4T: , (K  = E ,  E - 1, . . . , - E )  will be called 
components of a q-analog of the EO in respect to suq (2) if the action of the group generators 
on the tensor operators is similar to their action on the vector states I jm) (6). But in the 
quantum ,case the action of the q-generators is defined by means of their co-product (8). 
As a result the q-tensors components obey the following commutation relations with the 
generators of the su,(2) algebra: 
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[Jo ,  TL] = K ( 1 W  

J*r,’= f ( [ E  r K ] [ E  xk U f 1])’/2&.q-Jo. (12b) 

Furthermore it is proven [7,15,25] that a Wigner-Eckart theorem can be formulated for 
these tensor operators. Thus the problem of calculating their matrix elements is reduced 
to calculating the reduced matrix elements ( j ‘ ~ ~ T ’ ~ ~  j N )  with coefficient proportional to the 
CGCS. 

After formulating the ‘quantum’ tensor operator T: the suq(2) basis’ vectors T:[ jm) ,  
which transform according to the direct product D j  8 D’ can be presented as linear 
combinations by means of the CGCs of the vector components Irs) transforming according 
to the irrep D‘: 

Using this type of ‘mapping’ it is easy to prove that there exists an algebra of q-tensor 
operators generated by tensor products of ms, which are by themselves irreducible tensor 
operators [15]: 

We are now ready to investigate what type of tensor algebras can be generated by the two 

GordonSchwinger realization of the suq(2). 
q-boson creation and annihilation operators ai;a,i t i = 1.2 (I), which are used for the 

3. Construction of q-tensor operators and their properties 

The suq(2) algebra (5) can be generated by the operators (4) expressed in terms of q- 
t boson creation and annihilation operators ai , ai, i = 1.2. These operators by themselves 

close a deformation of the Heisenberg algebra-(l) and (2). We would like to clarify the 
transformation properties of the creation and annihilation operators in respect to the sup (2) 
representations. As a first example of a q-tensor operator Biedenharn [15] defines the pair 
of creation operators 

(15) 

as its two components obey the conditions (12a, 

tl L =a,q t “/2 tl,-l =a2q 7 -Nil2 . i * z  I 2  

Thus (15) is a q-tensor operator of rank 
b)  for 1 = 1. It is easy to see that the pair of annihilation operators 

i I . 5  , - - 4 -I/2a2q-Ni/2 & 1. -L 2 = -q%.qNZ/2 (16) 
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satisfy the same conditions (120, b) thus representing another q-tensor operator Ti,.. From 
the hermitian conjugation of the creation and annihilation operators follow the conjugation 
relations between the two q-spinors: 

. .  

(&)t = (-1)"-n+C q -01- tfi,-. (iJ = (-l)(fi-"'q-utk,-a. (17) 

They are exactly the same as for the usual su(2)-spinors, when q + 1. With~the two q-  
tensor operators of rank a, t1/2 and f /z ,  three different tensor products can be constructed. 
Each one can be co-multiplied by itselt 

and 

Inserting in (14) the necessary &GCs, calculated from the tables in 1241, the explicit 

and ai; i = 1 ,2  is obtained: 
representations of the components of the q-tensors Ti and in terms of q-bosons ai t 

The tensors cany the scalar representations in (18) and (19) and T t  = 0 and ft = 0 as 
a result of (1) and the CGCS symmetries (11). The conjugation relations for the operators 
(20) read 

The thud possible q-tensor product is obtained by multiplication of the two conjugated 
q-spinors: 

(23) 

The three-dimensional q-tensor operator LA m = 0, &1 has the explicit realization, in terms 
of q-bosons, 

8 
[ t+@i+}= Li 1 = 0 , 1  m = - l , - l + I  , ._.,  1 .  

1, m 

L; = q - 1 a f a 2 q - ( N $ + N 2 ) / 2  = 4 -1 J + d O  Li, = -9a2a1q t - ( N I + N ~ / ~  = -q J - ~ - J O  
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The components of this operator actually represent suq(2) generators (5) as irreducible 
q-tensor operators. This tensor product also carries a one-dimensional scalar representation 

where N = NI + NZ is the total number of bosons. It should be noticed that the 
decomposition (23) is obtained from [ t ~  8 1, e.g. 

2 1  

The conjugation relations for the components of the operator L!,, which follow from (1) and 
the symmetry properties (10) and (11) of the C G ~ S  are 

(L,) ’ t - - ( - l ) - m q - m L L m  (27) 

which contracts to the conjugation relation of irreducible tensor operator of rank 1 of su(2) 
or the Caaan components of the angular momentum operator, when q + 1. With the help 
of the relations (1) and (2) and the q-boson realization (4) of the su,(Z)-generators it can 
be verified that all three tensors T,, , f,! (21) or L!,, (24) are of rank 1 since each ones’ 
three components satisfy the definition (12) for I = 1. 

At the end of this section two more relations are presented, which are derived from (24) 
and (25) and are used in the following calculations: 

From (28) the operators qN and q-N can be expressed by means of the m = 0 components 
of the L!,,; I = 0, 1 operator and the operator q-=’O. 

4. Algebraic struchxe generated by the tensor operators 

In this approach we create a q-deformed algebra by preserving the transformation properties 
in relation to the su,(Z) of the basic oscillators and their tensor products, which play the 
role of generators. Thus an algebra of q-tensor operators is generated by their components. 
Usually, when an algebra is deformed, it is difficult to see what type of q-commutators are 
satisfied by the generators of the q-deformed algebra. In [28] a q-deformed superalgebra 
is closed by satisfying usual commutation and anticommutation relations [28] between 
the components of the q-tensor operators of rank 4 and 1. The even part is a boson 
representation of a q-deformation of the Sp(4, R) algebra which is enlarged with one more 
generator-q-”O. It commutes with all the other generators in the following way: 

(29) 

where I; is any of the fourteen components of the operators (15). (16), (ZO), (7.4) and (25). 
But this is a kind of a spurious generator, since in the limit q -+ 1, q-”O + 1 the classical 

q-Uo 1; = q-a~; q-2Jo 
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boson representation of the sp(4, R )  algebra is recovered. Moreover it is easy to cancel it 
in the so-constructed superalgebra, if all the fourteen even and odd generators are rescaled 
in the following way: 

Obviously, as a result of (30) all the usual commutators and anticommutators in [ZS] 
transform to q-commutators and q-anticommutators: 

where Si,m. S’i,- are any of the operators from (30) and U depends on the projection 
indexes ml, m2 of the two ms taking part in them. There is also a minor change in the 
rescaled operators defining properties as ms. The first term in (126) is multiplied by q* 
for the the rank 1 tensors (30b) and by qT’ for the rank 

As the building blocks of the algebra investigated are the spinor operators (15) and 
(16). their rescaled components from (30a) are considered as odd generators. The q- 
anticommutators of the odd generators, calculated with the use of the basic relations (1) and 
(2) between the q boson creation and annihilation operators, are 

tensors. 

(.f i ,mjy g i , m z } q n  4 (mj + m W  (1 + qmz-m1)(A:,+m2 + 2m6,,,-,, qZmr L:) + 2m~&,,,-~, 

where w = m2 - ml . Hence the anticommutators of the odd generators, as in the classical 
case, behave as a representation of the even part of the q-deformed super algebra. The 
last equation in (32) naturally suggests the introduction of a combination of the m = 0 
components of the A;; ( I  = 0 , l )  operators. Hence, instead of the rescaled standard cyclic 
components of the angular momentum operator (30b), which commute in the following 
way: 

[AA,, A,&W~-W = [ml - m ~ l q - @ “ - ~ ~ )  AA,+mI (33) 

we will use the combinations l i e  (28) denoted as operators with two ‘projection’ indices 

when m = f l  
when m = 0. (34) = f l  d m , N  = A: + 6m.O 4” A: 

The A: operator is an invariant of this algebra, (33), because it commutes with the 
operators Ab: 

[AA, A t ]  = 0. (35) 
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I n  all the commutators between the even generators the power of the defining term qv" is 
v, = 2 (mz - ml) as in (33). 

In the previous section an other two q-tensor operators TA and ?,A, canying the three- 
dimensional m = 0, f 1  irreducible representation of su,(2) were constructed. They 
differ from the LA operator, discussed above, in the commutation relations between their 
components. The relevant relations between their rescaled (30b) counterpm are 

A Georgieva and Ts Dankova 

where A = (q - q-'). For q + 1 the components of these q-tensors commute.The tensors 
Fh and CA have the structure of raising and lowering q-deformed pair operators (20) and 
A; (24) and A: (25) of the q-deformed multipole operators. The commutation relations 
(33) and (36) between the components of the three first-rank tensors close into themselves, 
so generating three q-deformed subalgebras. The q-commutators (36), which + 0 in the 
classical limit of q -+ 1 are now quadratic and proportional to the product of the m = 0 
component with the component wit& the correct projection, according to the CG expansion 
(14). of the relevant tensor. The number of the components of the q-tensors introduced 
((ZO), (24) and (25)) is exactly 10, which is the number of the sp(4, R)  generators. In 
order to close such a type of a larger algebra, the q-commutation relations between the 
subalgebra's generators (33) and (36) have to be calculated. We start with the commutators 
between the raising, FA, and lowering GA, pair, operators: 

[FA,, G~&IVWI = [ml - 

IF,. Gk21.p~ = 8" Am,,0(2 - A&.mt) mz # 0 

[Fd, CAI = 1 + 4-l &.I - 4 &,-I . 

- A&,-m,) A,,+,,,,, + mzqmlJ ml # 0 
(37) 

These commutators are also with a quadratic term proportional to the components 
of the angular momentum operator in a way' which gives, in the limit q --f 1, the 
relevant commutation relations of the classical Lie algebra of Sp(4, R). Furthermore, the 
commutators between the q-deformed multipole operators Am,@, (m = 0, +I; p = il, 0) 
(34) and the pair operators FA and G!,, for m = 0, f l  are proportional to the components 
of the pair operators taking part in them, respectively: 

(mt-m2+&) ~1 

(m1-m-p) 1 

[A,,,,, F&vc = I ~ I  - mz + ~ l q -  

G!,,r14us = [ml - mz + plq- 

m,+m* 
(38) 

G m , + m z .  

Equation (38) are easily calculated using the q-tensorial definition (20) of the components 
of the T,, and FA operators and the representation of L i l  (24) in terms of the suq(2) 
generators & respectively. In the limit q + 1 (36)-(38) correctly reproduce the relevant 
commutation relations of the tensor representation of the classical Sp(4, R). In summary, 
the nine components of the rescaled (30b) three q-tensor operators of rank 1 - TA, 
and LA; (m = 0, +I)  and !he scalar L: commute as generators of a q-deformed algebra 
which in the limit q --f 1 reproduces the commutation relations of the generators of the Lie 
algebra of Sp(4, R) in terms of irreducible su(2) tensor operators. The quantum algebra 
constructed in this way represents the even part of a q-deformed superalgebra. 
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In order to close the superalgebra we have tp determine the commutation relations 
between the even and odd generators. In this case they are determined by the power 
v, = 2mz - m,. We star t  with the q-tensor f;,. and its co-product FA: 

[Fill fi.mrl*ra = q-md2  (1 - q2mr-mi Fd f i .ml+m2.  (39) 

The q-commutators [Gf, g f P ] p  form = 0, -I.1 and CY =&$'coincide with (39) when 
In the l i d  q -+ 1 all the commutators (39) are 0. 

replacing the [F], [ f ] operators with their conjugated counterparts (17) and (21). 

IGk,tgi.m2lqw = q  (1 - qhl-"") Gig+,m,+m2. (40) 

(41) 

The mixed commutators of IF] with [g] are as follows: 

[Fi!. g+Jq- = 4 -"/w - q ~ * - " ) A o . y n 2  + (m1 - 2mz)q9f$,m,+mz. 

By conjugating (41) and moving the resulting gi,a, CY = if component to the right-hand 
side we obtain 

[Gf,, f + , J 4 ~  = qm1/2q2@"m1)l(1 - q"'-'"l) A.-&, - [ml - %lki,m,+m2 . (42) 

At the end the commutators of the multipole q-operator are dm+ with the two q-spinors 
are 

r&,, f;.mt14' - - [ q m - - m l + f  ( I - 2mz) +&zt,dd'" - qP)Ao.filfi.m,+m2 

[AA,, gi.m,lq- - - [qmz-ml-fi  ( m ~  
(43) 

Thus a q-deformation of a superalgebra, defined by the relations (32)-(43) is obtained. 
All the commutation relations, except those between the odd generators (32), between 
the cyclic components of the angular momentum operator (33) and between the multipole 
and pair operators (38) are quadratic. The even part itself becomes a quadratic sp,(4, R )  
algebra [29]. As a result a q-deformation of the oscillator realization of the sp(4, R) is 
obtained, which is an embedding of a representation of the spf (4, R) superalgebra in the 
infinite-dimensional associative superalgebra of the suf(2)-spinors . In the limit q + 1 
the deformed superalgebra contracts to the sp(4, R )  superalgebra The algebra is realized 
by co-multiplication of boson creation and annihilation operators only, with well defined 
transformation properties with respect to the irreducible representations of its subalgebra 
su,(2). The co-multiplication preserves the commutation relations, which permits the use of 
direct products of representations in the construction [30]. Hence the algebra generators are 
q-tensor operators, which makes the subsequent investigation of the vector representations 
and the calculation of the matrix elements of the generators easier. The generalization of 
such a realization of the q-deformed sp(2n, R) for n = 1.2, .  . . is possible [31]. 

Usually the quantization of a simple Lie algebra [IO, 111 or Lie superalgebra [12,13] 
is realized in terms of its Cbevalley generators. Such a deformation of the osp(l.2n) (or 
B(0, n )  in Kac's notation) is realized in terms of creation and annihilation operators of n 
ordinary harmonic oscillators in 1131. In our work the whole Cartan-Weyl basis of a real 
form of the q-deformed osp(l,4) algebra is obtained (for q real). We use the notation 
sp(4, R) superalgebra as it is more popular in physical applications and stresses that the 
even part sp(4, R )  is a subalgebra, which can be investigated and applied independently. 
These type of algebras are of physical interest for application in nuclear structure models. 

+ Jm,.o(qml - q-")-%-Jgi,mt+m2~ 
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